
Journal of Mathematical Chemistry 17 (1995) 401--410 401 

Towards an action principle governing biopolymer 
folding in vitro 

Ariel Fernandez 

lnstituto de Investigaciones Bioqufmicas, INIBIBB, 
Universidad Nacional del Sur, CONICET, CC 857, and lnstituto de Maternhtica, 1NMABB, 

Universidad Nacional del Sur- CONICET, Avenida Alem 1253, Bahfa Blanca 8000, 
Argentina and The Frick Laboratory, Princeton University, Princeton, NJ08544, USA 

Received 17 February 1995 

The exploration of conformation space performed by biopolymers is biased towards a con- 
fined region. This property is paramount in providing theoretical underpinnings of the time- 
constrained nature of folding. By introducing an action principle in the space of folding path- 
ways, we show how the folding process is guided expeditiously within realistic time frames. 

1. The need for an ac t ion  pr inciple  govern ing  exploration o f  conformat ion 
space 

The search in conformation space performed by biological polymers that  fold 
intramolecularly in vitro is expeditious once renaturation conditions are estab- 
lished in the environment [1,2]. The folding process leads effectively to an active 
structure within timescales far shorter than those that would be actually compati-  
ble with thermodynamic control. The context mentioned above suggests the exis- 
tence of  an action principle that governs or biases the search in conformation space, 
a space upon  which a complex mult i-minima energy landscape is constructed. 
Such rugged landscapes have been considered previously in the field of  polymer 
folding [3]. I f  such a variational principle actually exists, one must  ultimately prove 
that each experimentally-probed folding pathway, constitutes an extreme o f  an action 
integral. 

In this work we provide a theoretical strategy that enables us to define a suitable 
action by means of  a Lagrangian defined on the space of folding pathways. This 
Lagrangian is shown to be induced by a probability measure previously defined 
over the space of folding pathways. The measure weights systematically entire 
pathways and is actually the probability measure associated to a stochastic process 
[4,5]. The latter is shown to yield different realizations each of  which corresponds 
to a different kinetically-controlled pathway. Here kinetic control refers to the fact 
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that, given a specific state of the system, the weight of any apriori plausible transi- 
tion depends on the height of the kinetic barrier to be surmounted in order to realize 
the transition. This stochastic process has been shown to reproduce experimen- 
tally-determined folding pathways in such a way that the pathway that carries the 
highest statistical weight is identical to the one that contains the experimentally- 
identified folding intermediates [4, 6]. 

Once the Lagrangian structure of the stochastic process has been determined, 
the results are specialized to illustrate the convergence of folding pathways to a spe- 
cific pathway whose destination secondary structure is known to be biologically 
competent [4,6]. The experimental counterpart of such results is available for 
selected R N A  molecules enabling us to test the theoretical predictions. The illustra- 
tive example serves to show how the action principle underlies the search in confor- 
mation space, thus providing the theoretical underpinnings of expeditious folding 
under the severe time constraints which are relevant in the biological context. 

2. A measure  on the space of folding pathways 

We introduce a general scheme to assign statistical weights to all a priori path- 
ways in conformation space for a polymer that folds intramolecularly. Thus, we 
endow the space ofkinetically-controlled pathways with a regular measure induced 
by a stochastic process built upon a rugged potential energy landscape. This process 
simulates the progressive and opportunistic exploration of basins of attraction of 
critical points. The measure determines a scheme o f  statistical inference whereby the 
ensemble of  physically-relevant kinetically-arrested states [6] becomes a cross- 
section o f  the ensemble of  pathways at a f ixed instant. 

To fix notation, the space of pathways or histories is the space O of continuous 
maps 0 : I ~ X, where I = [0, {] is the parametric time interval associated to the 
experimentally-relevant timescale and X denotes a compact conformation space. 
The type of inferences that one can make based on the ensemble of kinetic pathways 
depends on the evaluation of integrals of the form 

Pr(A) = ~ drl(O), (1) 

where 0 denotes a generic pathway and Pr(A) indicates the probability of an event 
which is realized by an r/-measurable bunch A of pathways. 

The measure r/has been shown [5] to be determined via a representation theorem 
[7] by the Boltzmann measure/zB defined on X and a stochastic process governing 
the exploration of basins by surmounting barriers in the molecular potential energy 
landscape U : X ~ ~R (~R = set of real numbers). The conformation space is best 
described as follows: Consider a polymer chain made up of N monomeric units. 
Each conformation of the chain may be specified by M(N)  degrees of freedom. If 
we view conformation space modulo high frequency motions (vibrational modes 



A. Fernandez / An action principle governing biopolymer folding 403 

and planar angular distortion modes) which are averaged out on the timescales of 
folding events, the relevant internal variables correspond to dihedral angles repre- 
senting rotations around specific bonds preserving planar angles and distances 
between adjacent atoms. Thus, conformation space constitutes a torus of dimen- 
s ionM(N):  

X = M ( N )  - Torus. (2) 

In several realistic contexts [4,6], the search in conformation space is sev- 
erely time-constrained and has been shown to obey a stochastic process 
~: I --~ {g: X - +  X} of interval I on the space of automorphisms (g's) of X. This pro- 
cess may be alternatively viewed as a multi-vector field such that each possible tran- 
sition that starts at a point in X is assigned a vector whose length is related to the 
kinetic barrier associated to the transition. Since many transitions are possible 
from a given conformation onto adjacent basins, the field must be multi-vectorial. 
Whenever the exploration of conformation space takes place under time con- 
straints and kinetic control governs the pathways, a realization (x, that is, one of 
the integral curves o f (  that starts in x, may be defined by means of a general Mar- 
kov process which is defined below [4,6]. This is done in such a way that the stochas- 
tic process ~ becomes the continuous extension of a diffusional process defined 
over the network of critical points of the potential U: 

For each time t e l ,  we define a map t - - -*J (x , t )=  {j: l <<.j <<.n(x, t) }, where 
J(x ,  t) = collection of elementary events representing conformational changes or 
transitions between minima of U which are feasible at time t given that the initial 
conformation x has been chosen at time t = 0, and n(x,  t) = number of possible ele- 
mentary events at time t. Associated to each event, there is a unimolecular rate con- 
stant kj(x ,  t) = rate constant for the j th  event [4-6] which may take place at time t 
for a process that starts with conformation x. The mean time for an elementary 
event (transition between two free energy minima) is the reciprocal of its unimole- 
cular rate constant. Thus, the only elementary events with significant probability 
are elementary events that satisfy: kj(x,  t) -1 <<. I I I. 

To compute the unimolecular rate constant kj(x,  t) we assume that the j th  event 
corresponds to the transition xj--+~,  where xj and ~ represent respectively the 
initial and final stable conformations for the j th  event. Thus,  an Arrhenius-type 
derivation [4-6,8] of the thermally-induced mean passage rate yields in the para- 
bolic approximation: 

k j (x , t )  = A exp{ - /3 [U(~ ' ) -  U(xj)]}.  (3) 

Where A is the preexponential Arrhenius factor, ~ '  is the critical point of U corre- 
sponding to the top of the barrier that must be surmounted to realize the transition 
xj --~ x'y; ~ = 1/kB T and kB is the Boltzmann constant. 

At this point we may define the Markov process by first discretizing time and 
conformation space. The construction is made in such a way that the collection of 
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events which are plausible at time t depends exclusively on the state or conforma- 
t ion of  the system at time t - 1. The state of the system at time t - 1 is obviously 
determined by the sequence of  choices made starting with conformat ion x at time 0. 
However, the mechanism for choosing the event at time t must  not  depend on the 
pathway that led to the conformation at time t -  1. To devise the mechanism 
for choosing the event at generic time t, we introduce a random variable 
r e [0, )--]~.=(1 '0 kj(x, t)] uniformly distributed over the interval. Let r* be a realization 
o f r  at time t. Then there exists an event j* such that  r* satisfies the inequalities 

j~-I j" 

kj(x, t) <r* ~< ~ kj(x, t), (4) 
j=0 j=o 

(/c0(x, t) = 0 for any x, t). 

In this case the event j* =j*(x ,  t) is chosen at time t for the process that  starts with 
conformat ion x. This mechanism fulfills the Markovian tenets. Thus the map  
t--+j* (x, t) for fixed initial condition x constitutes a realization of the Markov pro- 
cess which defines a series of  transitions between minima. Again, the choice at 
time t was made based on the rates of all plausible events which the conformat ion at 
time t - 1 might undergo. This conformation,  in turn, was the result of  a sequence 
of  choices following the same mechanism defined by eq. (4) starting with conforma- 
tion x at time t = 0. The entire sequence of transitional events is continuously 
extendible to ~x [5]. 

To do statistical mechanics on folding pathways we need to construct an ensem- 
ble. This program requires endowing the space described above with a measure. 
In this regard, it has been shown [5] that the stochastic process (, jointly with the 
Bol tzmann measure/zB over the space of  initial states X0 = X, induces a measure 77 
on O. Succintly, this measure is constructed as follows: We first consider the space 
of  continuous functionals or actions C(O) (a functional over a space S associates 
a real number  to each object of  this space), then, given a linear functional F over 
C(O), there exists a measure r/on O [7] such that 

F(h) = fo h(O) dr/(0), for any h in C(~9). (5) 

Since there are no restrictions on F, we take 

F ( h ) =  f x  (h(~)>x d # s ( x ) = f x [ ~ h ( ~ x ) P x ( ~ x ) ]  d/~s(x). (6) 

In eq. (6), the symbol " ( . . .  )x" denotes the average over the ensemble of  realiza- 
tions ~x for fixed initial condition x. This average is determined by the probabilities 
of  the type Px((x), the probability that the pathway {x will be realized if we start 
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with conformation x. For fixed x, each realization is weighted according to the 
probabilities of the events chosen for every t. Given that the probability that event j  
occurs at time t is kj(x, t)/Y~.j, eJ(x,t)kf(x, t), the actual probability px((x) is given 
by 

j.=j.(t) j, ~.~(x,t) 

where the set {j* = j* (t) } is the set of chosen events that defines ~x. 
Thus, we have shown that r/is induced by the stochastic process ~. Explicitly, 

given a bunch A of trajectories, its weight or measure is 

r/A = {Supreme of the F(h)with O<~h<<. 1, h~ C(O) and A ~ support(h)}, 

(8) 
where support (h) = set of the limits of sequences of trajectories w's for which 
h(w) # o. 

3. Constructing the action over the space o f  folding pathways 

At this point we shall construct a Lagrangian based on the measure r/over the 
space of folding pathways. We proceed as follows: Let © denote a disc of dimension 
M = M(N):  f f t u ~  ©; consider monoparametric families of smooth maps 
~t: © -+ X, known as families of embeddings; then the space of all such embeddings 
and their tangent vectors constitutes the so-called principal fiber bundle TP: 
TP = {~, ~'} (~' = tangent vector to ~). At this point we define the lagrangian L: 
TP ~ fit over the principal fiber bundle induced by the measure 77: Let us denote by 
A4(t) the tube Ae(t) = I-[o<<t~<~t ~t ,~),  and TIt ---~ restriction of r/ to I-[o~e<.t Xe (the 
Xe's are identical copies of X indexed by the parameter t'), then 

~(~t,  ~l~tt) ~-'~-f'D L(~t(y), ~'t(Y)) d~Y = lim -A-l[Bt+'4a¢,(t + A) -- rh(ao(t ))] ,4-.,0 

(9) 
where L is the Lagrangian defined on the space of folding pathways which induces 
L. If we impose the condition 

minf{~} JI L(~x(t)'(x(t))dt = fr L(~x(t)'~x(* *' t))dt , (10) 

where ~;, is the most probable realization of the stochastic process starting with x, 
we obtain 

L(x,x')  = 1/2(sign d + 1)u/cd/dt[exp(u/c)], (11) 

where U (x(t)) = u (t); d = Uxx ~ and c = N 1/2kB T. The subsidiary condition is 
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r S(x(t), xt(t)) dt = constant, (12) 

where S(x, x ~) --- 1/2(sign d + 1)ug/c. 
The actual computation of an action requires that we introduce the following 

notation: 

OI + = reunion of boundaries of the subintervals o f / i n  which d(t)  >~ 0; 

Bi = u(ti+l)- u(ti)= ith barrier to be surmounted along the pathway x(t). 
Thus, the action along a generic pathway x(t) is given by 

~ L(x(t), xf(t)) dt 

~--- Z Z [u(ti+I)p-u(ti)p]/(p- l)!e° 
tteOI+ p>>.2 

~- ttE~6i+ pZ>12 [u(ti+l) - u(ti)] [k=lZ2%...,pU(ti+l)P-ku(ti)k-11/(P -- 1) 'ev 

= Y~" ~ B i [ = Z . . , p  J 1 ) , ' .  (13) 
tiEOI+ p>/2 

This action defined by the Lagrangian L favors pathways with the lowest bar- 
riers within a family of pathways {smooth map: I--* X} satisfying the isoperimetric 
condition: 

Sum of kinetic barriers along pathway x(t)=fl  S(x(t), x'(t)) dt = constant.  

To prove this crucial property it suffices to consider two generic pathways (all ener- 
gies are given in c-units): 

(I) X(t) involves a single barrier of height nA starting at an energy level with en- 
ergy e and ending at an energy level with energy e. 

(II) x(t) involves n identical barriers of height ,4 separating wells with zero point en- 
ergy e starting and ending at the same states as pathway X(t). 

In this generic case we obtain 

z L(x( t), x~ ( t) )dt = 2enA + nA 2 + O(A 3) 

< f L(X(t),X(t)')dt = 2enA + n2A 2 + O(A3). (14) 

Thus, within a family of pathways for which the sum of all barriers is a constant, the 
Lagrangian favors the pathway involving the lowest barriers regardless of their 
number. 
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4. Verifying the results for a specific R N A  

A quantitative analysis of the results requires graphic representation. For this 
purpose we introduce the base-pair probability matrix (BPPM) Pab(t) 
= foMab(Zg(t))dp(~9),wherep(A~(t))= ~lt,)dtlandMab(X)= 1 i fa  pairs 
with b in structure x and = 0 otherwise. That is, we choose a cross section of the 
ensemble obtained by fixing the indexing time parameter at a particular value t. 
Each a - b entry in the matrix Pab(t) represents the probability for monomer a to 
pair with monomer b (a, b = 1, 2, . . . ,  N), within secondary structures weighted 
according to the action defined. Since the BPPM is symmetric, the ensemble of  struc- 
tures weighted according to L will be conventionally represented in the upper right 
triangle of  a square N x N matrix and the active structure, in the lower left triangle. 

To compute the BPPM for an R N A  species that folds intramolecularly in vitro, 
we make use of a compilation of  thermodynamic parameters [9] and use it to gener- 
ate the kinetic barriers associated to the formation and dismantling of  hairpins 
[4,12]. The activation energy barrier for the rate-determining step in the formation 
of a hairpin [4,10] is known to be -TAS( loop) ,  where AS(loop) indicates the loss 
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Fig. 1. The 221 x221 BPPM P~b(t) for the species Q/3MDV-1RNA at real times t --- 0 s. The upper 
right triangle of the matrices represent the ensembles generated by the lagrangian L at different times. 
The active structure is represented in the lower left triangle for comparison. Notice the convergence 

of  the nonstationary pathways to a single destination structure identical to the active structure. 
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of conformational entropy associated to closing a loop. On the other hand, the acti- 
vation energy barrier associated with the melting of a hairpin is - AH(stem), the 
amount of heat released when forming all intramolecular contacts in the stem. The 
unimolecular rate constants for helix decay and helix formation have been obtained 
in analytical form [4,8,10] and used extensively in our computations. Their asso- 
ciated kinetic barriers depend respectively on the enthalpic loss associated to helix 
formation and the entropy loss associated to loop closure [4,8,10]. 

The compilation of rate constants is built upon a given primary sequence. This 
requires prior elucidation of all a pr ior i  plausible no-knotted secondary structures 
associated to the sequence, a relatively canonical combinatorial problem. The 
sequence indicates the position along the chain of the residues of four types denoted 
A, U, G, C, where A =  adenine, U=uraci l ,  G = guanosine and C =cytosine. 
Each secondary structure is determined by identifying complementary regions fol- 
lowing the Watson-Crick binding scheme: A-U,  G-C. 

The time evolution of the BPPM has been monitored for the species Q/3MDV1- 
RNA, a template for the technologically-crucial enzyme Q/3-replicase [4,11]. The 
BPPM has been computed at t = 0 s, t = 10 s and t = 15 s in real time, a realistic 
time frame for the folding of Q/3MDV-1RNA. The results obtained adopting a 
thermodynamic ensemble at the starting point (each structure is initially weighted 
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according to the Bol tzmann  measure)  are displayed in figs. 1-3, respectively. We 
m u s t  dist inguish two types of  pathways.  One is s ta t ionary and  starts at  the global 
free energy m i n i m u m ,  the confo rma t ion  for which the two highly complemen ta ry  
extremities (see fig. 4) are bound  to each other  [4]. The other  pa thways  start  at 
metas tab le  s tructures and are therefore,  nonsta t ionary .  All nons ta t ionary  path-  
ways converge to the exper imenta l ly-determined active secondary s t ructure  shown 
in fig. 4 [4,11], as direct inspect ion of  figs. 1-3 reveals. This result suppor ts  the exis- 
tence of  an act ion principle guiding the explorat ion in confo rma t ion  space. More-  
over, it suppor ts  the conjecture that  the pa thway  whose des t inat ion s t ructure  is 
biologically relevant is actually the extreme of  the act ion integral. 
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